Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 13(1): 21389, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049590

RESUMO

Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.


Assuntos
Aprendizado Profundo , Phlebotomus , Psychodidae , Animais , Psychodidae/parasitologia , Reprodutibilidade dos Testes , Phlebotomus/parasitologia , Entomologia
2.
Commun Biol ; 6(1): 1244, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066195

RESUMO

Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.


Assuntos
Leishmania , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Insetos Vetores/genética , Europa (Continente)
3.
Pathogens ; 12(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37887706

RESUMO

Phlebotomine sand flies (Diptera: Psychodidae) are the principal vectors of phleboviruses and Leishmania spp., the causative agents of leishmaniases. The Mediterranean sand fly fauna is diverse, and leishmaniasis, mainly caused by Leishmania infantum, is endemic in the Balkan countries. Despite recent entomological surveys, only some districts of Kosovo have been sampled for sand flies, with no proof/confirmation of L. infantum. This study aimed to gain further insights into the species composition of natural sand fly populations in previously unsampled districts and areas in Kosovo without reports of leishmaniasis and to detect Leishmania DNA in sand flies. A sand fly survey was conducted in 2022 in all seven districts of Kosovo. Collected females were screened for Leishmania DNA by PCR. Positive samples were sequenced and subjected to maximum likelihood analysis with reference sequences for further molecular characterization. The trapping activities at 114 different localities resulted in 3272 caught specimens, comprising seven sand fly species of two genera, namely Phlebotomus neglectus, Ph. perfiliewi, Ph. tobbi, Ph. papatasi, Ph. simici, Ph. balcanicus and Sergentomyia minuta. Leishmania infantum DNA was detected in three individual sand flies of Ph. neglectus and Ph. perfiliewi. This study provides the most extensive sand fly survey in Kosovo and reports the first record of L. infantum DNA in sand flies, indicating autochthonous circulation of L. infantum.

4.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018120

RESUMO

Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.


Assuntos
Arbovírus , Phlebovirus , Psychodidae , Rhabdoviridae , Animais , Humanos , Animais Domésticos
5.
J Med Entomol ; 60(2): 294-305, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36610984

RESUMO

Phlebotomus (Ph.) sergenti is the main vector of Leishmania (L.) tropica (Trypanosomatida: Trypanosomatidae), the causative agent of anthroponotic cutaneous leishmaniasis in Morocco. This species has an extended geographical distribution, wider than that of the parasite. The main objective of our study was to analyze the genetic diversity of Ph. sergenti collected in four foci in Morocco: Taza, Foum Jemâa, El Hanchane, and Ouarzazate. We studied a set of diversity and population structure indices by sequencing two markers; nuclear EF-1α and mitochondrial Cyt b from 175 individual sand flies. Our results showed a considerable degree of intraspecific polymorphism with a high number of haplotypes identified in both genes. Many polymorphic sites detected in the Cyt b sequences (SCyt b = 45) indicate that it is the most polymorphic marker showing a distinct distribution of haplotypes according to their geographical origin, whereas the EF-1α marker showed no geographical isolation. Analysis by Tajima's D and Fu's Fs tests revealed a possible recent expansion of the populations, especially with the EF-1α marker, showing significant values in Taza and Ouarzazate sequences. The present study revealed significant genetic diversity within Ph. sergenti populations in Morocco. The results warrant further research using a combination of more than two markers including mitochondrial and non-mitochondrial markers, which may provide more information to clarify the genetic status of Ph. sergenti.


Assuntos
Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Phlebotomus/parasitologia , Psychodidae/parasitologia , Fator 1 de Elongação de Peptídeos/genética , Citocromos b , Marrocos/epidemiologia , Leishmaniose Cutânea/parasitologia , Genética Populacional
6.
Vet Parasitol Reg Stud Reports ; 31: 100729, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569914

RESUMO

Leishmaniases are among the most neglected vector-borne diseases, infecting humans as well various animal hosts with clinical outcomes varying from cutaneous disorders to visceral and life-threatening disease. In Algeria, canine leishmaniasis (CanL) caused by Leishmania infantum is endemic mainly throughout the northern regions of the country with the Mediterranean climate that favours the occurrence of Larroussius sand flies, the vectors of the parasite. This study conducted in Bougaa and Kherrata, two regions located in north-eastern Algeria and endemic for CanL, focuses on: i) composition of sand fly fauna, ii) screening of Leishmania parasites and iii) the blood sources of engorged females. Entomological surveys were conducted between June and September 2019 using CDC light-traps in rural areas of both regions. Sand fly specimens were morphologically identified, females were screened for Leishmania DNA using kDNA and ITS1 primers, blood meals in engorged females were identified by peptide mass mapping (PMM)-based MALDI-TOF mass spectrometry and confirmed by DNA sequencing analysis. Overall, 1940 specimens (844 males, 1096 females) were collected, all belonging to the subgenus Larroussius: Phlebotomus perniciosus, (94.64%), Ph. perfiliewi (4.74%) and Ph. longicuspis (0.62%). No Leishmania DNA was detected in the evaluated pools (n = 106) (1096 females). PMM-based MALDI-TOF MS successfully identified a source of blood in 92% (141/154) of engorged females (135 Ph. perniciosus and 6 Ph. perfiliewi). All blood meals were taken from domestic cattle (Bos taurus) except for one originating from a dog (Canis lupus familiaris) and one from sheep (Ovis aries). Sequencing of host cytochrome B gene confirmed these identifications but showed lower success rate of 58% (29/50), demonstrating the high effectivity of peptide mass mapping (PMM)-based MALDI-TOF mass spectrometry for routine identification of blood meals of varying degree of digestion. Our findings represent first record of cattle and dog blood in sand flies in Algeria and striking feeding preference of local sand fly population at domestic sites of studied regions for cattle which may play an important role in parasite transmission. Further studies are needed to better understand potential contribution of cattle to ecology of sand flies and epidemiology of leishmaniasis in north-eastern Algeria.


Assuntos
Doenças dos Bovinos , Doenças do Cão , Leishmania infantum , Leishmaniose , Phlebotomus , Psychodidae , Doenças dos Ovinos , Argélia/epidemiologia , Animais , Bovinos , DNA de Cinetoplasto , Doenças do Cão/epidemiologia , Cães , Feminino , Leishmania infantum/genética , Leishmaniose/epidemiologia , Leishmaniose/veterinária , Masculino , Psychodidae/genética , Psychodidae/parasitologia , Ovinos
7.
Insects ; 13(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35206770

RESUMO

An entomological survey at rural and cavernicolous localities in four provinces in southern Thailand provided 155 blood-fed females of sand flies (Diptera: Psychodidae) that were identified based on morphological characters as Idiophlebotomus asperulus (n = 19), Phlebotomus stantoni (n = 4), P. argentipes (n = 3), Sergentomyia anodontis (n = 20), S. barraudi (n = 9), S. hamidi (n = 23), S. hodgsoni (n = 4), S. hodgsoni hodgsoni (n = 32), S. indica (n = 5), S. iyengari (n = 2), S. khawi (n = 17), S. silvatica (n = 11) and Sergentomyia sp. (n = 6). The dominant species in this study was S. hodgsoni hodgsoni, which was collected specifically in a Buddha cave. Screening for DNA of parasitic protozoans revealed eight specimens (5.16%) of four species (S. barraudi, S. indica, S. khawi and Id. asperulus) positive for Trypanosoma sp., while no Leishmania spp. DNA was detected. Blood meals of engorged females were identified by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) assay on a fragment of cytochrome b (cyt b) gene with a success rate 36%, humans, dogs, and rats being determined as sources of blood. Bloodmeal analysis of two Trypanopsoma-positive females (S. barraudi and Sergentomyia sp.) identified blood from dogs and humans, respectively. Our findings indicate that S. barraudi, S. indica, S. khawi and Id. asperulus may be incriminated in circulation of detected Trypanosoma spp.

8.
PLoS Negl Trop Dis ; 16(1): e0009952, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34990451

RESUMO

BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various human and animal pathogens such as Bartonella bacilliformis, Phlebovirus, and parasitic protozoa of the genus Leishmania, causative agent of leishmaniases that account among most significant vector-borne diseases. The Maghreb countries Mauritania, Morocco, Algeria, Tunisia, and Libya occupy a vast area of North Africa and belong to most affected regions by these diseases. Locally varying climatic and ecological conditions support diverse sand fly fauna that includes many proven or suspected vectors. The aim of this review is to summarize often fragmented information and to provide an updated list of sand fly species of the Maghreb region with illustration of species-specific morphological features and maps of their reported distribution. MATERIALS AND METHODS: The literature search focused on scholar databases to review information on the sand fly species distribution and their role in the disease transmissions in Mauritania, Morocco, Algeria, Tunisia, and Libya, surveying sources from the period between 1900 and 2020. Reported distribution of each species was collated using Google Earth, and distribution maps were drawn using ArcGIS software. Morphological illustrations were compiled from various published sources. RESULTS AND CONCLUSIONS: In total, 32 species of the genera Phlebotomus (Ph.) and Sergentomyia (Se.) were reported in the Maghreb region (15 from Libya, 18 from Tunisia, 23 from Morocco, 24 from Algeria, and 9 from Mauritania). Phlebotomus mariae and Se. africana subsp. asiatica were recorded only in Morocco, Ph. mascitti, Se. hirtus, and Se. tiberiadis only in Algeria, whereas Ph. duboscqi, Se. dubia, Se. africana africana, Se. lesleyae, Se. magna, and Se. freetownensis were reported only from Mauritania. Our review has updated and summarized the geographic distribution of 26 species reported so far in Morocco, Algeria, Tunisia, and Libya, excluding Mauritania from a detailed analysis due to the unavailability of accurate distribution data. In addition, morphological differences important for species identification are summarized with particular attention to closely related species such as Ph. papatasi and Ph. bergeroti, Ph. chabaudi, and Ph. riouxi, and Se. christophersi and Se. clydei.


Assuntos
Doenças Transmissíveis/transmissão , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Psychodidae/microbiologia , Psychodidae/parasitologia , África do Norte/epidemiologia , Animais , Doenças Transmissíveis/epidemiologia , Humanos , Insetos Vetores/virologia , Psychodidae/virologia
9.
Transbound Emerg Dis ; 69(3): 1073-1083, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33686765

RESUMO

In Morocco, leishmaniases are a major public health problem due to their genetic diversity and geographical distribution. Cutaneous leishmaniasis (CL) is an infectious disease caused by various species of Leishmania and transmitted typically by bite of phlebotomine sand flies. This study identifies sand fly fauna in Ibaraghen village, province of Azilal, which is a focus of CL, by combination of morphological and molecular methods (sequencing of COI gene, MALDI-TOF MS protein profiling). Nested-kDNA PCR was used to detect and identify Leishmania species within potential vector species. 432 CDC light traps were placed at different heights above ground level at four capture sites during a whole year. Traps at 1.5 m above the ground yielded capture of sand flies almost double compared to above ground level (29.33%), while the collection reached 55.09% when the traps were placed 2.5 m above ground. A total of 2,830 sand flies were collected, 2,213 unfed specimens were morphologically identified, 990 males (44.73%) and 1,223 females (55.26%) of 13 species; ten Phlebotomus species and three Sergentomyia species. Six species were analysed by MALDI-TOF MS protein profiling (4 Phlebotomus and 2 Sergentomiya species), and their identification was confirmed by COI sequencing. 1,375 unfed females were screened for the presence of Leishmania by nested-kDNA PCR in pools, 11/30 pools of P. sergenti showing a single band of 750 bp corresponding to L. tropica. Our results confirm the role of P. sergenti as a proven vector in Azilal focus of cutaneous leishmaniasis; however, the relative abundance of other species known as vectors of Leishmania species emphasizes the risk of introduction of L. infantum and L. major in this province. For the first time in Morocco, a combined approach to identify sand flies by both morphology and molecular methods based on DNA barcoding and MALDI-TOF MS protein profiling was applied.


Assuntos
Leishmania , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , DNA de Cinetoplasto , Feminino , Insetos Vetores , Leishmania/genética , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/veterinária , Masculino , Marrocos/epidemiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
10.
Parasit Vectors ; 14(1): 371, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289883

RESUMO

BACKGROUND: Phlebotomine sand flies (Diptera: Psychodiae) in the Republic of Moldova have been understudied for decades. Our study provides a first update on their occurrence, species composition and bloodmeal sources after 50 years. METHODS: During 5 seasons (2013-2017), 58 localities from 20 regions were surveyed for presence of sand flies using CDC light traps and manual aspirators. Species identification was done by a combination of morphological and molecular approaches (DNA barcoding, MALDI-TOF MS protein profiling). In engorged females, host blood was identified by three molecular techniques (RFLP, cytb sequencing and MALDI-TOF peptide mass mapping). Population structure of most abundant species was studied by cox1 haplotyping; phylogenetic analyses of ITS2 and cox1 genetic markers were used to resolve relationships of other detected species. RESULTS: In total, 793 sand flies were collected at 30 (51.7%) localities from 12 regions of Moldova. Three species were identified by an integrative morphological and molecular approach: Phlebotomus papatasi, P. perfiliewi and Phlebotomus sp. (Adlerius), the first being the most abundant and widespread, markedly anthropophilic based on bloodmeal analyses, occurring also indoors and showing low population structure with only five haplotypes of cox1 detected. Distinct morphological and molecular characters of Phlebotomus sp. (Adlerius) specimens suggest the presence of a yet undescribed species. CONCLUSIONS: Our study revealed the presence of stable sand fly populations of three species in Moldova that represent a biting nuisance as well as a potential threat of pathogen transmission and shall be further studied.


Assuntos
Insetos Vetores/classificação , Leishmaniose/transmissão , Psychodidae/classificação , Animais , Feminino , Haplótipos , Especificidade de Hospedeiro , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Masculino , Moldávia/epidemiologia , Phlebotomus/classificação , Phlebotomus/genética , Phlebotomus/fisiologia , Filogenia , Psychodidae/genética , Psychodidae/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
PLoS Negl Trop Dis ; 15(6): e0009512, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157020

RESUMO

BACKGROUND: Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE: This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.


Assuntos
Mordeduras e Picadas de Insetos/epidemiologia , Insetos Vetores/fisiologia , Saliva , Simuliidae/fisiologia , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Gana , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Mordeduras e Picadas de Insetos/imunologia , Masculino , Pessoa de Meia-Idade , Oncocercose , Sudão
12.
Parasit Vectors ; 14(1): 291, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051839

RESUMO

BACKGROUND: Sand flies are principal vectors of the protozoan parasites Leishmania spp. and are widely distributed in all warmer regions of the world, including the Mediterranean parts of Europe. In Central European countries, the sand fly fauna is still under investigation. Phlebotomus mascittii, a suspected but unproven vector of Leishmania infantum, is regarded as the most widely distributed species in Europe. However, many aspects of its biology and ecology remain poorly known. The aim of this study was to provide new data on the biology and ecology of Ph. mascittii in Austria to better understand its current distribution and potential dispersal. METHODS: Sand flies were collected by CDC light traps at four localities in Austria for 11 (2018) and 15 weeks (2019) during the active sand fly season. Climatic parameters (temperature, relative humidity, barometric pressure and wind speed) were retrospectively obtained for the trapping periods. Sand flies were identified by a combined approach (morphology, DNA barcoding, MALDI-TOF protein profiling), and blood meals of engorged females were analysed by DNA sequencing and MALDI-TOF mass spectrometry. RESULTS: In total, 450 individuals of Ph. mascittii were caught. Activity was observed to start at the beginning of June and end at the end of August with peaks in mid-July at three locations and early August at one location. Increased activity was associated with relatively high temperatures and humidity. Also, more individuals were caught on nights with low barometric pressure. Analysis of five identified blood meals revealed chicken (Gallus gallus) and equine (Equus spp.) hosts. Sand fly abundance was generally associated with availability of hosts. CONCLUSION: This study reports unexpectedly high numbers of Ph. mascittii at selected Austrian localities and provides the first detailed analysis of its ecology to date. Temperature and humidity were shown to be good predictors for sand fly activity. Blood meal analyses support the assumption that Ph. mascittii feeds on mammals as well as birds. The study significantly contributes to understanding the ecology of this sand fly species in Central Europe and facilitates prospective entomological surveys.


Assuntos
Ecologia , Insetos Vetores , Phlebotomus , Estações do Ano , Animais , Áustria , Galinhas , Europa (Continente) , Feminino , Cavalos , Insetos Vetores/parasitologia , Leishmania infantum , Masculino , Phlebotomus/genética , Psychodidae , Estudos Retrospectivos , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Parasit Vectors ; 14(1): 20, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407822

RESUMO

BACKGROUND: Phlebotomine sand flies are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). Information on sand flies in Central Europe is scarce and, to date, in Austria, only Phlebotomus mascittii has been recorded. In 2018 and 2019, entomological surveys were conducted in Austria with the aim to further clarify sand fly distribution and species composition. RESULTS: In 2019, a Ph. simici specimen was trapped in Austria for the first time. Analyses of two commonly used marker genes, cytochrome c oxidase I (coxI) and cytochrome b (cytb), revealed high sequence identity with Ph. simici specimens from North Macedonia and Greece. Phylogenetic analyses showed high intraspecific distances within Ph. simici, thereby dividing this species into three lineages: one each from Europe, Turkey and Israel. Low interspecific distances between Ph. simici, Ph. brevis and an as yet unidentified Adlerius sp. from Turkey and Armenia highlight how challenging molecular identification within the Adlerius complex can be, even when standard marker genes are applied. CONCLUSION: To our knowledge, this study reports the first finding of Ph. simici in Austria, representing the northernmost recording of this species to date. Moreover, it reveals valuable insights into the phylogenetic relationships among species within the subgenus Adlerius. Phlebotomus simici is a suspected vector of L. infantum and therefore of medical and veterinary importance. Potential sand fly expansion in Central Europe due to climatic change and the increasing import of Leishmania-infected dogs from endemic areas support the need for further studies on sand fly distribution in Austria and Central Europe in general.


Assuntos
Phlebotomus , Psychodidae , Animais , Austrália , Classificação , Citocromos b/genética , Vetores de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Insetos Vetores/classificação , Insetos Vetores/genética , Leishmaniose Visceral/transmissão , Phlebotomus/classificação , Phlebotomus/genética , Filogenia , Psychodidae/classificação , Psychodidae/genética
14.
Pathogens ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317097

RESUMO

Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arthropod-borne (arbo) viruses. While in Mediterranean parts of Europe the sand fly fauna is diverse, in Central European countries including Austria mainly Phlebotomus mascittii is found, an assumed but unproven vector of Leishmania infantum. To update the currently understudied sand fly distribution in Austria, a sand fly survey was performed and other entomological catches were screened for sand flies. Seven new trapping locations of Ph. mascittii are reported including the first record in Vienna, representing also one of the first findings of this species in a city. Morphological identification, supported by fluorescence microscopy, was confirmed by two molecular approaches, including sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) protein profiling. Sand fly occurrence and activity were evaluated based on surveyed locations, habitat requirements and climatic parameters. Moreover, a first comparison of European Ph. mascittii populations was made by two marker genes, cytochrome c oxidase subunit 1 (COI), and cytochrome b (cytb), as well as MALDI-TOF mass spectra. Our study provides new important records of Ph. mascittii in Austria and valuable data for prospective entomological surveys. MALDI-TOF MS protein profiling was shown to be a reliable tool for differentiation between sand fly species. Rising temperatures and globalization demand for regular entomological surveys to monitor changes in species distribution and composition. This is also important with respect to the possible vector competence of Ph. mascittii.

15.
Parasit Vectors ; 13(1): 547, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148317

RESUMO

BACKGROUND: The Greek island of Crete is endemic for both visceral leishmaniasis (VL) and recently increasing cutaneous leishmaniasis (CL). This study summarizes published data on the sand fly fauna of Crete, the results of new sand fly samplings and the description of a new sand fly species. METHODS: All published and recent samplings were carried out using CDC light traps, sticky traps or mouth aspirators. The specific status of Phlebotomus (Adlerius) creticus n. sp., was assessed by morphological analysis, cytochrome b (cytb) sequencing and MALDI-TOF protein profiling. RESULTS: Published data revealed the presence of 10 Phlebotomus spp. and 2 Sergentomyia spp. During presented field work, 608 specimens of 8 species of Phlebotomus and one species of Sergentomyia were collected. Both published data and present samplings revealed that the two most common and abundant species were Phlebotomus neglectus, a proven vector of Leishmania infantum causing VL, and Ph. similis, a suspected vector of L. tropica causing CL. In addition, the field surveys revealed the presence of a new species, Ph. (Adlerius) creticus n. sp. CONCLUSIONS: The identification of the newly described species is based on both molecular and morphological criteria, showing distinct characters of the male genitalia that differentiate it from related species of the subgenus Adlerius as well as species-specific sequence of cytb and protein spectra generated by MALDI-TOF mass spectrometry.


Assuntos
Phlebotomus/anatomia & histologia , Phlebotomus/classificação , Psychodidae/anatomia & histologia , Psychodidae/classificação , Animais , Feminino , Grécia , Insetos Vetores/fisiologia , Leishmaniose Cutânea/transmissão , Leishmaniose Visceral/transmissão , Masculino , Phlebotomus/fisiologia , Psychodidae/parasitologia , Estações do Ano , Especificidade da Espécie
16.
Parasit Vectors ; 13(1): 573, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176888

RESUMO

BACKGROUND: Sand flies (Diptera: Psychodidae) are medically important vectors of human and veterinary disease-causing agents. Among these, the genus Leishmania (Kinetoplastida: Trypanosomatidae), and phleboviruses are of utmost importance. Despite such significance, updated information about sand fly fauna is missing for Balkan countries where both sand flies and autochtonous leishmaniases are historically present and recently re-emerging. Therefore, a review of historical data on sand fly species composition and distribution in the region was followed by a large-scale entomological survey in eight Balkan countries to provide a recent update on local sand fly fauna. METHODS: The literature search involved the period 1910-2019. The entomological survey was conducted at 1189 sampling stations in eight countries (Bulgaria, Bosnia and Herzegovina, Croatia, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia), covering 49 settlements and 358 sampling sites between June and October in the years 2014 and 2016, accumulating 130 sampling days. We performed a total of 1189 trapping nights at these stations using two types of traps (light and CO2 attraction traps) in each location. Sampling was performed with a minimal duration of 6 (Montenegro) and a maximal of 47 days (Serbia) between 0-1000 m.a.s.l. Collected sand flies were morphologically identified. RESULTS: In total, 8490 sand fly specimens were collected. Morphological identification showed presence of 14 species belonging to genera Phlebotomus and Sergentomyia. Historical data were critically reviewed and updated with our recent findings. Six species were identified in Bosnia and Herzegovina (2 new records), 5 in Montenegro (2 new records), 5 in Croatia (2 new records), 9 in Bulgaria (5 new records), 11 in North Macedonia (1 new record), 10 in Serbia (no new records), 9 in Kosovo (3 new records) and 4 in Slovenia (no new records). CONCLUSIONS: This study presents results of the first integrated sand fly fauna survey of such scale for the Balkan region, providing first data on sand fly populations for four countries in the study area and presenting new species records for six countries and updated species lists for all surveyed countries. Our findings demonstrate presence of proven and suspected vectors of several Leishmania species.


Assuntos
Distribuição Animal , Psychodidae/classificação , Animais , Península Balcânica , Feminino , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Leishmaniose/transmissão , Masculino , Psychodidae/parasitologia
17.
Parasit Vectors ; 13(1): 580, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203446

RESUMO

BACKGROUND: Ethiopia is affected by human leishmaniasis caused by several Leishmania species and transmitted by a variety of sand fly vectors of the genus Phlebotomus. The sand fly fauna in Ethiopia is highly diverse and some species are closely related and similar in morphology, resulting in difficulties with species identification that requires deployment of molecular techniques. DNA barcoding entails high costs, requires time and lacks reference sequences for many Ethiopian species. Yet, proper species identification is pivotal for epidemiological surveillance as species differ in their actual involvement in transmission cycles. Recently, protein profiling using MALDI-TOF mass spectrometry has been introduced as a promising technique for sand fly identification. METHODS: In our study, we used an integrative taxonomic approach to identify most of the important sand fly vectors of leishmaniasis in Ethiopia, applying three complementary methods: morphological assessment, sequencing analysis of two genetic markers, and MALDI-TOF MS protein profiling. RESULTS: Although morphological assessment resulted in some inconclusive identifications, both DNA- and protein-based techniques performed well, providing a similar hierarchical clustering pattern for the analyzed species. Both methods generated species-specific sequences or protein patterns for all species except for Phlebotomus pedifer and P. longipes, the two presumed vectors of Leishmania aethiopica, suggesting that they may represent a single species, P. longipes Parrot & Martin. All three approaches also revealed that the collected specimens of Adlerius sp. differ from P. (Adlerius) arabicus, the only species of Adlerius currently reported in Ethiopia, and molecular comparisons indicate that it may represent a yet undescribed new species. CONCLUSIONS: Our study uses three complementary taxonomical methods for species identification of taxonomically challenging and yet medically import Ethiopian sand flies. The generated MALDI-TOF MS protein profiles resulted in unambiguous identifications, hence showing suitability of this technique for sand fly species identification. Furthermore, our results contribute to the still inadequate knowledge of the sand fly fauna of Ethiopia, a country severely burdened with human leishmaniasis.


Assuntos
Insetos Vetores/classificação , Psychodidae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Etiópia/epidemiologia , Feminino , Leishmaniose , Masculino , Filogenia , Especificidade da Espécie
18.
PLoS Negl Trop Dis ; 13(9): e0007669, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498786

RESUMO

BACKGROUND: Identification of blood sources of hematophagous arthropods is crucial for understanding the transmission cycles of vector-borne diseases. Many different approaches towards host determination were proposed, including precipitin test, ELISA, DNA- and mass spectrometry-based methods; yet all face certain complications and limitations, mostly related to blood degradation. This study presents a novel method for blood meal identification, peptide mass mapping (PMM) analysis of host-specific hemoglobin peptides using MALDI-TOF mass spectrometry. METHODOLOGY/PRINCIPAL FINDINGS: To identify blood meal source, proteins from abdomens of engorged sand fly females were extracted, cleaved by trypsin and peptide fragments of host hemoglobin were sequenced using MALDI-TOF MS. The method provided correct host identification of 100% experimentally fed sand flies until 36h post blood meal (PBM) and for 80% samples even 48h PBM. In females fed on two hosts, both blood meal sources were correctly assigned for 60% of specimens until 36h PBM. In a validation study on field-collected females, the method yielded unambiguous host determination for 96% of specimens. The suitability of PMM-based MALDI-TOF MS was proven experimentally also on lab-reared Culex mosquitoes. CONCLUSIONS/SIGNIFICANCE: PMM-based MALDI-TOF MS analysis targeting host specific hemoglobin peptides represents a sensitive and cost-effective method with a fast and simple preparation protocol. As demonstrated here on phlebotomine sand flies and mosquitoes, it allows reliable and rapid blood source determination even 48h PBM with minimal material input and provides more robust and specific results than other currently used methods. This approach was also successfully tested on field-caught engorged females and proved to be a promising useful tool for large-scale screening of host preferences studies. Unlike other methods including MALDI-TOF protein profiling, it allows correct identification of mixed blood meals as was demonstrated on both experimentally fed and field-collected sand flies.


Assuntos
Análise Química do Sangue/métodos , Psychodidae/fisiologia , Animais , Comportamento Alimentar , Hemoglobinas/química , Humanos , Peptídeos/química , Estudo de Prova de Conceito , Psychodidae/química , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
19.
Acta Trop ; 197: 105063, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207207

RESUMO

Serbia was a country endemic for leishmaniasis with rich and abundant sand fly fauna during the middle of the 20th century. After 1968, the disease was considered as eradicated, and as a consequence, all research on vectors and pathogens was neglected. The recent detection of Leishmania infantum in sand flies and confirmed cases of leishmaniasis in humans and dogs indicated the risk of re-emergence in Serbia. Also, for millions of refugees/immigrants, Serbia is a transit route between East-Mediterranean and Middle-East countries, and Central/North Europe, and it is under constant risk of vector and disease introduction. Primary objectives of this research were to determine which sand fly species are present around transit routes, whether they include vectors of the Leishmania spp. moreover, is/are Leishmania spp. present in the vectors. Surveys were conducted at 55 locations, organised in four clusters, which covered main immigrant routes and shelters/camps as well as tourist/trade transit routes. In total, 367 sand fly specimens were collected. Nine species were identified: Phlebotomus papatasi, P. perfiliewi, P. tobbi, P. neglectus, P. sergenti, P. alexandri, P. simici, P. balcanicus and P. mascittii. Detection of P. alexandri represents the first record in Serbia. The diversity of sand fly species increased while the number of collected specimens per night decreased during the period of research neglection. Phlebotomus neglectus, a proven vector of L. infantum, was a predominant species in all surveyed clusters, and in 56,52% of locations, it was the only species present. Although all detected species are regarded either as proven or suspected vectors of Leishmania spp., screening of females for Leishmania presence resulted negative. Our study provides insight into the significant changes of sand fly fauna in Serbia during the end of XX and beginning of XXI century. Diverse sand fly fauna in Serbia suggests that the establishment of new leishmaniasis foci is possible.


Assuntos
Leishmaniose/transmissão , Psychodidae , Animais , Cães , Emigração e Imigração , Feminino , Humanos , Insetos Vetores , Masculino , Inquéritos e Questionários
20.
Parasit Vectors ; 12(1): 247, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109351

RESUMO

BACKGROUND: Phlebotomine sand flies (Diptera: Psychodidae) are haematophagous insects that transmit the protozoan parasite Leishmania infantum (Kinetoplastida: Trypanosomatidae), the main causative agent of both zoonotic visceral leishmaniasis (VL) and canine leishmaniasis (CanL) in the Mediterranean basin. Eight species of sand flies have been previously recorded in Romania: Phlebotomus papatasi, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus perfiliewi, Phlebotomus neglectus, Phlebotomus longiductus, Phlebotomus balcanicus and Sergentomyia minuta. Three of them (P. perfiliewi, P. neglectus and P. balcanicus) were incriminated as vectors of L. infantum. Recent reports of autochthonous CanL in Romania require updates on sand fly distribution and diversity in this country. METHODS: Between 2013-2014 and 2016-2018, CDC light traps and mouth aspirators were used to collect sand flies in 132 locations from Romania, indoors and around various animal species shelters. Species identification of collected specimens was done using morphological keys, genetic tools and MALDI-TOF protein profiling. RESULTS: Sand flies were present in seven localities (5.3%): Eibenthal, Baia Noua, Gura Vaii (south-western Romania, Mehedinti County); Fundatura, Pâhnesti, Epureni (eastern Romania, Vaslui County); and Schitu (southern Romania, Giurgiu County). Of the total number of collected sand flies (n = 251), 209 (83.27%) were Phlebotomus neglectus, 39 (15.53%) P. perfiliewi, 1 (0.40%) P. papatasi, 1 (0.40%) P. balcanicus and 1 (0.40%) P. sergenti (sensu lato). CONCLUSIONS: We confirmed the presence of five sand fly species previously recorded in Romania. However, their updated distribution differs from historical data. The diversity of sand fly species in Romania and their presence in areas with Mediterranean climatic influences constitutes a threat for the reemergence of vector-borne diseases. In the context of CanL and VL reemergence in Romania, but also due to imported cases of the diseases in both humans and dogs, updates on vector distribution are imperative.


Assuntos
Distribuição Animal , Variação Genética , Phlebotomus/genética , Phlebotomus/fisiologia , Animais , Feminino , Insetos Vetores/genética , Insetos Vetores/fisiologia , Masculino , Romênia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...